Wednesday, November 26, 2014

Discussing the Realities of Telemedicine Expansion

The passage of the American Care Act (ACA) has opened the door to insurance coverage for all Americans, especially those who have chronic pre-existing conditions. One of the major concerns with this expansion of insurance is the additional stress it will place on organizing medical appointments and general care from non-specialists. While the most effective solution for this problem, training more general practitioners, is a long-term one requiring years before any implementation will see a positive effect, some individuals have argued that the widespread adoption of telemedicine could offer more immediate relief to this future stress. The chief benefits surrounding the implementation of telemedicine that could aid this overall problem are saving time born from a reduction of hospitalizations due to more efficient physician time utilization, reduction in on-site registration congestion and increased physician collaborative efficiency increasing the rate of patient turnover without sacrificing care quality.

In a general sense telemedicine (and its synonym “telehealth”) involves the use of telecommunication and information technologies to provide healthcare when patient and physician (or other medical resources) are in different physical locations. More technically it is generally thought that telehealth involves only patients and their personal health management using technology and telemedicine involves physician interaction. For the purpose of this post telemedicine will be used to cover both of these definitions. Telemedicine is typically broken down into three main categories: 1) store-and-forward (asynchronous); 2) remote monitoring; 3) real-time interactive services (synchronous).1

Store-and-forward is the most “hands-off” type of telemedicine where various important medical data is collected and transferred to doctors and/or medical techs for analysis at a future time offline. Store-and-forward is convenient because the data can be collected without the involvement of a doctor; however, any diagnosis is deferred to another time. The delivery of this information typically needs to be contained within a properly structured electronic medical record if done online. With the omission of actual patient-physician communication, store-and-forward demands patients produce medical histories as well as audio and/or video information.

The concerns about store-and-forward is that the electronic nature and format of the information (in more modern mediums apart from the telephone) along with the reliance on the patient to perform most of the work could provide undue burden on elderly and less tech savvy individuals (note all of the problems people had filling out forms to apply for insurance in state marketplaces after the ACA went into effect). In addition the possibility exists to produce some initial information gaps because of the lack of a physician to ask clarifying follow-up questions, which could cause future problems. While certainly not insurmountable, these concerns must be managed.

Remote monitoring is a more advanced version of store-and-forward where physicians monitor the vital signs and other specific characteristics relative to a patient’s given medical condition using appropriate devices. Application of remote monitoring is typically reserved for patients will chronic conditions that could benefit from constant monitoring where significant changes provide early warning to a potential acute detrimental change in health.

Real-time interactive services are what most people think of when discussing telemedicine and involve the patient and physician communicating in real-time. Interactive services follow the same pattern as in-person visits with a review of medical history, physical examination, general health questions, etc. except the interaction is through an online video service or telephone. Not surprisingly real-time interaction is the most valuable form of telemedicine, but is also the most complicated. Overall the success of telemedicine to make significant cuts in healthcare costs and increase access is largely contingent on the success of real-time services versus store-and-forward and remote monitoring.

Three major areas of technology are utilized for telemedicine: portable medical imaging devices, portable data transfer devices (in modern times these elements usually involve smart phones with certain apps) and the stable wireless infrastructure to ensure accurate transfer of information, especially in real-time. The most problematic element of the above technology is ensuring access to portable medical imaging. There is some hope that smart phones will be able to provide high quality resolution images that could substitute for on-site medical imaging, but at the moment it is difficult to anticipate MRI, fMRI, CT, PET scans, etc. being conducted from a private residence versus at a hospital or local medical site.

One of the immediate concerns about the judgment of whether or not telemedicine is medically and financially efficient is the contradiction between the numerous studies that have been conducted regarding these questions. Conflicting studies are usually created because different researchers use different assumptions when producing their results. For example a recent meta-analysis studying reviews of telemedicine determined that twenty reviews concluded telemedicine works and has positive medical and/or economic effects, nineteen reviews concluded telemedicine could work and has potential to produce positive effects, but required more research to fully identify this potential and twenty-two reviews concluded a lack of evidence for any significant positive effects of telemedicine.2 Clearly such a wide divergence of opinion is concerning. The development of a universal standard to govern the questions and assumptions surrounding investigations into telemedicine would provide a means to effectively judge meaningful and valuable studies versus less valid studies and eliminate this conflicting confusion.

Despite this contradiction one of the major problems with telemedicine reviews in general is that only a small number actually explore how telemedicine influence clinical outcomes, which is the most important question regarding whether or not the application of telemedicine is appropriate.2,3 The most promising sub-categories of telemedicine that have some empirical evidence for increasing positive outcome potential are teleradiology, telepsychiatry, echocardiographic analysis and communications between primary and secondary healthcare providers.4,5 As alluded to above currently a significant problem in the debate about the viability of telemedicine is that both parties (proponents and opponents) are attempting to push the application or rejection of a technology without proper evidence that telemedicine does or does not produce positive outcomes at a comparable cost to traditional medicine.

Telemedicine proponents theorize numerous potential advantages including, but not limited to: 1) increased physician accessibility in isolated communities that lack easy transit access to hospitals and medical complexes; 2) reduced of outpatient visits due to remote patient monitoring and reduced total mortality due to increased monitoring; 3) reduced probability for pharmaceutical mistakes due to removed prescription verification and increased administration oversight; 4) reduced probability of infectious disease transmission due to eliminating interaction between infected and non-infected patients in common hospital areas; this benefit could also be enhanced due to the higher probability of the infection being antibiotic resistant; 5) some argue it will increase the level of medical education by allowing subordinates and students to better observe practitioners; 6) reduction of negative psychological associations with visiting a doctor due to existing “creature comforts” of home; 7) grant the ability for physicians to provide consolations to other physicians and/or patients without additional travel;

Overall outside of some specific goals the general idea of telemedicine is to reduce physical office crowding, which will increase overall efficiency and reduce costs, and increase physician/patient interaction efficiency in part achieved by easing the ability to interact with multiple physicians at the same time. Despite the above goals, at the moment the greatest demonstrated benefits from telemedicine comes from remote monitoring in patients with chronic conditions and interacting with specialists that rely on verbal interaction versus physical contact or cues.2,6

While proponents sing of the economic benefits of telemedicine, these potential benefits are only in the long-term, if they exist at all. In the short-term the economics of telemedicine are actually negative due to capital costs associated with the telecommunication and data management equipment as well as the technical training for all relevant medical personnel. Other economic challenges are unclear legal regulations, both within states and between states, and the ongoing lack of recognition by insurance companies for certain aspects of telemedicine as “valid” services.7 Private insurance appear to have numerous barriers due to administrate rules regarding reimbursement of telemedicine services. This lack of recognition could create a “chicken or egg” problem where telemedicine may not make significant advancement until insurers cover it, but insurers may not cover it until significant advancement is made and its overall efficacy to produce positive medical outcomes is demonstrated.

In addition there is a concern about increased costs associated with a greater probability of diagnostic error due to the inability of the physician to actually physically touch and interact with the patient. For example certain physical tests that could produce certain symptom clues will not be available and expecting untrained patients to produce the same results even under instruction is not reasonable. This lack of interaction also raises questions regarding the theoretical time saved with regards to real-time telemedicine. The issue of time saved is not from the perspective of the patient, for unless a patient resides very close to his medical practitioner’s practice, the elimination of travel time and time in the waiting room will produce less wasted time.

However, this time issue could be a legitimate concern from the perspective of physicians. For example some have estimated that virtual interactions involving teledermatology take around thirty minutes where traditional in-person consultations typically take 15 minutes.8 The nature of overcrowding mentioned above is based upon the idea that a physician’s time will be spread too thin with the continuous addition of newly insured patients, if telemedicine increases examination times it will be a detriment not a benefit to physician access.

In addition one of the biggest problems with the expansion of telemedicine is that it appears not to be living up to one of its highest theorized benefits, expansion of medical care in rural communities, especially to elderly individuals. For example despite Medicare rules being in place from 2001 to pay distant practitioners 100 percent of the rate under the physician fee schedule the volume of telemedicine services utilized by Medicare beneficiaries remains low. One recent review found that only 38,000 telemedicine visits were claimed in 2009 up from only 26,000 in 2006.9 Some proponents may try to spin the 32% increase as impressive, but the base increase of only 12,000 individuals reveals the truth that telemedicine is struggling to catch on among the elderly; a group proponents state will be significantly aided by telemedicine largely due to access issues. Worse is that these claims are actually lower than reported for a number of practices inappropriately billed Medicare for video consultations taking place in the homes of urban patients.9

Another foreboding trend is that only 369 practitioners submitted claims for 10 or more telemedicine services in 2009 with only 14 counties having more than 300 telemedicine sessions among its residents.9 Therefore, even in the counties that have telemedicine services that are being used, the volume of use is very small, which could make it difficult for these centers to justify both the capital costs and administrative costs of telemedicine over the long-term.

Also there appears to be a significant lack of local medical specialists who are willing to service rural areas through telemedicine (and maybe in general). General practitioners typically provide telemedicine services, which is unfortunate because one benefit of telemedicine is that it is supposed to “bridge the gap” between the glut of specialists in urban environments and the lack of them in rural environments.

There are numerous reasons why specialists appear unwilling to use telemedicine to acquire more patients in rural areas: 1) specialists already have a sufficient in-person patient population and do not have time for new patients; 2) the money provided by Medicare (in general) is not enough for specialists to bother with taking new patients (opportunity cost is too high); 3) some argue there is a lack of confidentiality and pervasive liability concerns in telemedicine; 4) other inconveniences associated with telemedicine, outside of direct monetary payment, not worth it (licensing, moving between in-person and electronic interaction, general change in routine, managing new operations and costs for the video networks, etc.); 5) prior negative experiences have soured specialists on future attempts at adoption;10-12

One bright spot in rural telemedicine utilization appears to be telepharmacy. Numerous pharmacies can be managed and/or supported by outside pharmacists producing lower fixed costs, especially in rural communities with populations so small that traditional pharmacies cannot be financially supported.9 Telepharmacy appears to be more successful than telemedicine involving specialists largely because of relative reduced in-person workloads between pharmacists and specialists making the acquisition of more patients less time intruding.

The issue of reduced cost may also be questionable for those attempting to utilize telemedicine while on Medicare or Medicaid. Currently due to the Benefits Improvement and Protection Act, Medicare has to pay 100% of the fee to the distance practitioner as well as an additional facility fee to the telemedicine site where the patient travels.9 As of 2013 this fee was $24.9 At a basic level this additional fee makes telemedicine 24 dollars more expensive than traditional patient-physician appointments; multiply that single payment by x number of patients (assume 36,000 from above) and telemedicine costs the government at least 864,000 dollars more than traditional medicine and would only increase with more adoption. In addition to that extra cost there is some evidence to support remote interpretation in medical encounters to be more expensive than its alternatives.2,13 Therefore, the economic realities of simply administering telemedicine need to be more carefully and specifically studied before presuming that they reduce costs.

There is also some concern that real-time telemedicine may increase costs due to individuals increasing their utilization of healthcare services born from the convenience of telemedicine. Interestingly enough some preliminary data suggests the exact opposite based on a change in psychological tendencies regarding a commitment to general health. In simpler terms the convenient nature of telemedicine may induce individuals to view medical check-ups with less meaning. For example in one study telemedicine users were less likely to follow up with an additional physician visit in a reasonable period of time (only 6% of users) versus 13% that visited a physician’s office and 20% that visited an ER.14 A similar mindset is commonly seen in committing to physical exercise where when one attends a gym it sends a psychological cue to an individual that it is time to exercise increasing the probability of meaningful exercise versus if that individual attempts to exercise within his/her home.

Another more minor concern regarding telemedicine is the overall privacy and safety associated with the transfer of medical data over a wireless network both for single issue transfers and real-time remote monitoring. Also while standardization from the practitioner is potentially politically complicated, ensuring transmission quality from the patient if telemedicine is conducted from the patient’s home is questionable. Would it be the responsibility of the patient to ensure security and bear the cost of any breach? Or should real time telemedicine from the patient’s home be managed with a strict protocol only allowing certain technologies and if the patient does not have access to these technologies it would be recommended that the patient abstain from utilizing telemedicine at his home?

Another problem that some believe could be an obstacle to the expansion of telemedicine, especially real-time telemedicine, is the regulatory issues that make it difficult to obtain licenses to practice medicine across multiple states and gaining privileges at multiple facilities. The total extent to which this obstacle is actually restrictive is unknown. The mindset that establishes this obstacle as meaningful is questionable because it seems to imply that a large number of physicians will never choose to utilize telemedicine in their practices, thus the expansion of telemedicine is dependent on the smaller few that do choose to practice it. Due to their smaller number these physicians will need more lenient regulation in order to practice in multiple healthcare markets across multiple states to ensure that potential telemedicine consumers will have access.

Interestingly this “obstacle” appears to only be one in the minds of proponents who believe all concessions should be made to foster the growth of telemedicine. The reason this obstacle of licensure fees and licensing is somewhat hollow is that most of the individuals seeking telemedicine have an in-state physician and it is very difficult to envision an environment where the only telemedicine option is out-of-state. To weaken safety regulations for the sole purpose of providing convenience to more than likely less than 1% of all individuals who will utilize telemedicine in the future seems foolish.

One possible solution to the licensing issue is the creation of a national telemedicine license. However, the immediate problem with this solution is how to “define” telemedicine as significantly different from traditional medicine in that the national telemedicine license cannot also act as a national traditional license to practice medicine. For example real-time interactive telemedicine is basically a patient visiting a physician, but from home or designated secondary site instead of in the office. However, if the appropriate practicing credentials are different between real-time telemedicine and traditional medicine within a given state it can be suggested that there is a fundamental difference in how real-time telemedicine and traditional medicine is practiced, which makes no logical sense. It would be akin to saying that water in the Pacific Ocean is comprised of two hydrogen atoms and one oxygen atom while water in the Atlantic Ocean is comprised of something different. A secondary issue with this solution is numerous states already have differing policies on telemedicine licensing; how can states that have such differing viewpoints as Oregon and Texas come to an understanding regarding the qualifications for a universal license without creating a contradiction with the first above problem?

Another important issue is differentiating the different fundamental legal principles between traditional medical care and telemedicine. While clearly certain things are going to be the same including, required informed consent, confidentiality, etc., other elements will be different like more responsibility on the patient for providing their own medical care and the security of transferred data. One potentially controversial issue would be what defines malpractice in telemedicine? Depending on the quality of the video feed it is reasonable to suggest that certain physical indicators could be more easily misinterpreted by physicians leading to a misdiagnosis; therefore, should physicians be held less liable for misdiagnoses in telemedicine?

A significant disadvantage of telemedicine is the inability to immediately start treatment for severe cases. While telemedicine may offer some alleviation from the fear of hospitals and/or doctors, it does not address general ambivalence of potential medical conditions. There are some individuals that will simply not go to the hospital until the very last moment. In these cases a delay in treatment may be critical. This lack of immediate treatment is also relevant in antibiotic treatments where injections may be required over oral or topical treatments.

Some individuals are concerned that widespread personal objection to telemedicine will prevent significant growth, especially resistance from physicians themselves. A review of literature suggests that, regardless of specialty, once telemedicine is initially explained to patients they have little problem with the results identifying the greatest advantages as the reduction of travel time and stress.15 However, physicians are typically slower to adopt technology in their practices. Within hospitals this slower adoption is irrelevant as only a small number of the attending physicians will have to be sufficiently trained and accepting of telemedicine for hospitals will primarily remain areas of direct contact medicine. The real issue regarding adoption is how fast will physicians accept telemedicine in their personal practices and will it even matter? Widespread adoption may not be important because it would be not be necessary to establish rules and regulations for telemedicine.

One caveat is clear when analyzing survey results underlying patient acceptance and satisfaction with telemedicine is that one must acknowledge the presence of utilization/sample bias. Individuals who engage in the use of telemedicine do so because they are inherently more accepting of it. A similar example could be seen in a survey result that indicates 81% of people that rode Roller Coaster A were satisfied with the experience. Such a high number is not surprising because people who do not like roller coasters will not ride Roller Coaster A and therefore do not participate in the survey. Overall because of this inherent utilization bias simple satisfaction surveys do little good in determining whether or not telemedicine is advantageous for a given community. Note that studies identified that most telemedicine services are utilized by younger, more affluent patients with a high level of tech knowledge lending credence to existing sampling bias.14,16

Instead of focusing on simplistic issues like “Do you like telemedicine or not?”, surveys and their associated analyses should focus on specifics regarding what consumers like and do not like about telemedicine. Furthermore one must ask the question: is the goal simply to provide telemedicine to those who want it or to convince those who don’t of its supposed virtues?

Not surprisingly tutorial training has been suggested to ease the learning transition for more technologically wary physicians before fully engaging in the utilization of telemedicine. However, these tutorials must be smartly designed and lack easily producible technological glitches to limit frustration with both the tutorial and telemedicine in general. Fulfillment of these expectations depends upon overcoming and improving upon the limitations of certain telecommunication equipment as technological issues can restrict physicians’ enthusiasm in some cases. For example and not surprisingly researchers testing low-cost technology have found that poor imaging can limit the usefulness and perceived effectiveness of technology.2

When individual practices or hospitals seek to establish telemedicine programs certain planning steps are critical for success. The most important principle step is to establish a vision for what will embody the telemedicine program. As mentioned above there are multiple aspects of telemedicine, so the first element in planning for a program is to determine which of these aspects will be represented. The development and application of a clear vision reduces the probability of mistakes and increases motivation due to a specific understanding of the goal of the telemedicine program.

In addition to the three general categories of telemedicine the motivation of vision will typically involve at least one of three factors: 1) telemedicine is used to deliver care to remote locations with little traditional access; 2) telemedicine is used to provide alternative methods to deliver care at reduced costs; 3) telemedicine is used to expand market share and improve competitive advantages against other healthcare providers. Note that this third option is a viable one because hospitals are businesses although it would be unfortunate and troublesome if hospital A used telemedicine services to poach hospital B patients when hospital B still had adequate resources to support the care of those patients.

After establishing the vision the medical organization must establish the financial plan that will be necessary to achieve that vision, both short-term and long-term. Part of establishing this financial plan will be incorporating how the telemedicine vision will achieve maximum utilization because if people do not consistently use the program then justifying it financially is a losing proposition.

Another important element in a telemedicine program is properly integrating it into the overall healthcare service organization within the hospital. Physicians cannot view traditional medicine and telemedicine medicine as opposing forces or an “us vs. them” type of model. Physicians must realize that the overall goal of both models is to provide the highest quality medical care at appropriate cost to patients.

While telemedicine exams will not involve patients being present at the hospital, the room in which the physician conducts the examination must have as much similarity to a typical exam room as possible only making exceptions for specific types of lighting and technology. The technology footprint of the room must be as reserved as possible. The intent of telemedicine is not to dazzle and impress the patient with flashy technology, but to provide quality medical care. In addition telemedicine should follow the same standard protocols used in traditional medicine for equipment use, examination and documentation.

Not surprisingly a telemedicine program will only be as effective as the staff running it, so training will be an important aspect in providing quality care. The first element in training will be establishing a leader or coordinator that will run the training sessions and even the telemedicine program itself. An effective leader will make sure that all personnel have an outlet to voice concerns as well as ensure that those working with telemedicine are not ignored or displaced by the technology. After establishing a leader, a training schedule should be established with clear objectives for each session including an early and late call participation session so individuals have a benchmark to how their performance has improved from before training to after training. Training should be as realistic as possible and include multiple technical difficulties to ensure that a strategy exists to manage those difficulties.

Finally it is important for a telemedicine program to have an efficient response structure where both staff and patients have the ability to provide feedback regarding their experience and the operation of the system. All staff should be surveyed frequently (once every two weeks) to ensure the fluid and efficient operation of the program. Patients should have the option of completing a survey electronically after their telemedicine session. The results of these surveys should be compiled and analyzed by a small committee that will act if deemed necessary on the rendered opinions.

One of the biggest problems with the manner in which telemedicine proponents conduct their real world applicatory analysis is that they seem to believe that praising the benefits of telemedicine is enough to drive hospitals and other private practices to adopt the necessary technology. Clearly this belief has proven false for most medical institutions have been slow to adopt even the simplest elements required for “modern” telemedicine, electronic medical/health records. If telemedicine proponents want to more efficiently expand telemedicine they need to produce individualized analyses for specific medical institutions that demonstrate the benefits of telemedicine rather than simply using blanket statements of how it is good and saves money no matter what.

Proponents of telemedicine dream of a system that lowers the total costs of healthcare, for both the patients and the practitioners, as well as increases the level of access and ease at which medical care is administered. This ideal is thought to be achieved through eliminating time wasting activities like physical travel to a medical institution, elongated check-in (instead modern check-in simply would utilize a code number and password), reduced overhead, more efficient data collection, etc. Unfortunately this ideal has not proven easily achieved and may not even been viable. The first problem is that there is no uniform evaluation system to determine whether specific aspects of telemedicine help to achieve this ideal instead just a hodge-podge number of reviews claiming contradictory results. A second problem is that private insurance has been slow to cover real-time telemedicine procedures and current Medicare payment structures make telemedicine more expensive for the government versus traditional medicine.

Another concern is the idea of using telemedicine to address the anticipated general practitioner shortage. If telemedicine does not reduce the average time that a physician spends with a patient while at least maintaining overall quality of care then telemedicine will not be a useful strategy for this particular goal. Unfortunately at the moment there are very few studies that have addressed patient-physician time versus quality of care. In their theoretical musings regarding patient turnover telemedicine proponents appear to think that there are numerous general practitioners simply sitting in their offices out of boredom with no patients to see, thus they are freely available to video conference with patients outside of their “treatment area”. This vision is rarely, if ever, accurate, thus turnover times are critical to determining whether or not telemedicine will be a boon to any overcrowding.

Further problems stem from the fact that even when given the opportunity to utilize telemedicine, most individuals elect to continue to engage in traditional medicine despite travel concerns. Compounding this problem is the demographics that are taking advantage of real-time telemedicine: young urban well-off individuals with knowledge of technology; these individuals facilitate a small benefit from telemedicine from a standpoint of the healthcare industry in general. If this trend continues the public perception of telemedicine could shift to it being an economic burden that has to be absorbed by the poor and the middle class to accommodate an additional convenience to the wealthy, which could create significant resentment towards telemedicine in general.

Overall the idea of telemedicine, especially real-time interaction, is a strong one with significant potential, but proponents have to separate hopeful theory from reality. While positive steps have been taken for the store-and-forward and remote monitoring aspects of telemedicine, the major savings and benefits from telemedicine come from real-time interaction, which is much further behind in its utility and usefulness. Without sufficient work telemedicine will never be anything but a niche market hardly capable of producing the benefits dreamed of by its proponents.

Citations –

1. Allely, E. “Education and training in telemedicine: synchronous and asynchronous telemedicine.” J Med Syst. 1995. 19:207–12.

2. Ekeland, A, Bowes, A, Flottorp, S. “Effectiveness of telemedicine: a systematic review of reviews.” International journal of Medical Informatics. 2010. 79:736-71.

3. Hailey, D, Roine, R, and Ohinmaa, A. “Systematic review of evidence for the benefits of telemedicine.” J. Telemed. Telecare. 2002. 8(Suppl. 1):1–30.

4. Roine, R, Ohinmaa, A, and Hailey, D. “Assessing telemedicine: a systematic review of the literature.” CMAJ. 2001. 165:765–71.

5. Bee, P, et Al. “Psychotherapy mediated by remote communication technologies: a meta-analytic review.” BMC Psychiatry. 2008. 8:60-73.

6. Hersh, W, et Al. “Telemedicine for the Medicare population: Update” (AHRQ Report No. 131). Rockville, MD: Agency for Healthcare Research and Quality. 2006.

7. Rogove, H, et Al. “Barriers to Telemedicine: survey of current users in acute care units.” Telemedicine and e-Health. 2012. 18(1):48-53.

8. Moffatt, J, “Barriers to the uptake of telemedicine in Australia – a view from providers.” The University of Queensland, School of Medicine. 2011.

9. Gilman, M, and Stensland, J. “Telehealth and medicare: payment policy, current use, and prospects for growth.” Medicare & Medicaid Research Review. 2013. 3(4):E1-E14.

10. Luo, J. “Telemedicine: Is it time now?” Primary Psychiatry. 2008. 16(2):27–30.

11. Whitten, P, and Buis, L. “Private payer reimbursement for telemedicine services in the United States.” East Lansing, MI: Michigan State University. 2006.

12. Grigsby, B, et Al. “The slow pace of interactive video telemedicine adoption: the perspective of telemedicine program administrators on physician participation.” Telemedicine and e-Health. 2007. 13(6):645-656.

13. Azarmina, P, and Wallace, P. “Remote interpretation in medical encounters: a systematic review.” J. Telemed. Telecare. 2005. 11(3):140-45.

14. Uscher-Pines, L, and Mehrotra, A. “Analysis of teladoc use seems to indicated expanded access to care for patients without prior connection to a provider.” Health Affairs. 2014. 33(2):258-264.

15. Witten, P, and Love, B. “Patient and provider satisfaction with the use of telemedicine: Overview and rationale for cautious optimism.” J Postgrad Med. 2005. 51:294–300.

16. Exploring the Digital Nation America's Emerging Online Experience, 2013, U.S. Department of Commerce: Washington, DC. p. 9-15.

Wednesday, November 12, 2014

Torpor in Space Travel

With existing tested technology the fastest transit time between Earth and Mars is during the perihelion (although Mars has only come within 34.8 million miles in 2003 versus the 33.9 million of the actual perihelion) resulting in a minimum transit estimate of approximately 180 days. Some believe that six months of monotonous space travel would be a significant psychological detriment on the future colonists, thus they recommend investigating a strategy of inducing torpor initiated through a therapeutic hypothermia methodology. Therapeutic hypothermia involves lowering an individual’s body temperature and is commonly reserved for medical emergencies involving cardiac arrest and various embolisms like strokes. It is thought that the decrease in temperature reduces biological metabolism, which reduces tissue damage born from oxidation and excess neuronal excitation triggered by a lack of regulated blood flow. Note that torpor is a state of decreased physiological activity through a reduced body temperature reaching a lower limit of survivable metabolism. Due to these changes torpor is commonly viewed as a state of consciousness distinct from wakefulness, sleep or coma.

The chief method to induce therapeutic hypothermia is a controlled reduction of core temperature through one of three possible methods: 1) invasive cooling usually involving an IV of cooled fluids; 2) conductive cooling where the body is placed in contact with cold compresses, typically cold gel pads and/or wet blankets; 3) convective cooling where specific gases evaporate and pass into the nasal and oral cavity leading to a reduction in body temperature.

Of the three conductive cooling is typically the most widely utilized because of its effectiveness and simplicity. Some researchers have explored new and more direct chemical methods to develop a hibernation state like activating adenosine receptors or using hydrogen sulfide to reduce cellular demand for oxygen.1 Others have thought to induce hibernation through synaptic manipulation, but that method is probably best avoided due to brain plasticity issues, which could result in temporary or permanent brain damage.

While the above methods are viable for inducing therapeutic hypothermia, a significant concern for a “hibernated” space travel strategy is that cooling/cryogenic strategies are in their infancy, thus most therapeutic hypothermia states rarely exceed 24-hrs and the longest is only about 14-days, a long cry from the 180-days of a trip to Mars. In addition to improving cooling methodology, temperature monitoring needs to be improved to incorporate a better realization of core temperature versus localized temperatures from specific measurement points (bladder, rectal, tympanic or esophageal). In general practice these specific measurement points tend to correlate with core temperature, but long-term hypothermia inducement will more than likely require more universal tracking of acute internal temperature changes. In addition to lowering the core body temperature one must neutralize shivering otherwise metabolic rates will not decrease sufficiently to realize the associated therapeutic benefits. Currently shivering is commonly controlled through the application of desflurane, pethidine, and/or meperidine.2

The most obvious non-psychological benefit of placing a colonization crew in torpor is a significant reduction in food/consumables for transit and the potential reduction in overall consumables. The reason that the overall reduction may only be a possibility is determined by whether or not the non-consumption during transit will transfer to “on Mars” consumption. For example suppose 1 ton of food (not mission specific just a number for example purposes) is loaded for a standard non-torpor mission and among the four colonists a total of 4 pounds is consumed daily. Over the course of the trip approximately 760 pounds of food will be consumed leaving 1,240 pounds of food for consumption on Mars. In a torpor mission two strategies are available: 1) only 1,240 pounds of food will be loaded saving 760 pounds for something else or just straight cost savings; 2) 1 ton of food is loaded with no cost savings, but an additional 760 pounds of food will be available for consumption on Mars.

Secondary benefits come from the possible reduction in the required pressurized volume in the living quarters and the elimination of ancillary crew accommodations, which could reduce the size of the transport craft reducing the total cost of the mission or increase the ability to add subsystem redundancy and/or more radiation shielding at similar costs. Basically the chief non-psychological benefit for a torpor mission is a greater flexibility in distributing what types of materials are loaded for a Mars mission and the final mission cost.

While torpor proponents would suggest that there are a few bugs left to work out, but prospects for such a strategy appear viable, in actuality there remain two significant problems that must be overcome before a torpor strategy can be viewed as viable. The first problem, the most pressing, is muscular atrophy born from general space travel and the second problem is overall safety. The principle responsibility of skeletal muscle is to govern movement of all voluntary muscle, including the maintenance of posture. Due to human evolution on Earth skeletal muscle has to move parts of the body against gravity, thus there is a strong relationship between the size and metabolism of skeletal muscle and the gravitational force of the existing environment.

Skeletal muscle is comprised of bundles of muscle fibers, which are large cells formed through the fusion of many individual cells during development. Most skeletal muscles consist of myfibrils, which are cylindrical bundles of either thicker myosin filaments or thinner actin filaments, and form contractile elements (sarcomeres). Sarcomeres are separated into Z discs (the ends) along with A and I bands where A bands are largely comprised of myosin and I bands are largely comprised of actin. Some have additionally defined a buffer zone of sorts (H zone).
The general methodology for muscle contraction is the sliding filament model.

Muscle fibers generate active and passive mechanical forces to overcome gravity to ensure proper posture, movement and biological function. Active muscle tension is derived from muscle contractions leading to shortening of myofiber’s sarcomeres whereas passive tension occurs through sarcomere stretching reducing their level of overlap.3-5 It appears that slow twitch muscle fibers are more susceptible to the change in gravitational force versus fast twitch muscle fibers.6,7 This difference in degradation can be troublesome because not only is slow twitch muscle more associated with posture, but is also associated with muscular endurance. In addition to muscle atrophy there is a serious drop-off (>50%) in protein synthesis rates and a significant loss of calcium balance.8-10 Whether or not this loss of calcium is due to actual direct losses or indirect absorption losses (i.e. a lack of Vitamin D) is unknown.

The change in protein synthesis rate is further compromised by activation of protein degradation rates.11 One of the major pathways responsible for atrophy is the ATP-dependent ubiquitin/proteasome pathway with the most important feature being E3 ubiquitin ligase due to its specificity in targeting certain proteins for elimination.12

Torpor proponents believe that the negative influence of atrophy, which will be much worse for individuals in torpor because of the lack of ability to exercise, can be neutralized through the use of neuromuscular electrical stimulation (NMES). NMES induces muscle contraction using electric impulses born from electrodes on the skin in close proximity to the desired muscle to be stimulated. This system works because the electrical stimulation from the electrodes mimics neuronal stimulation derived from action potentials.

Proponents view NMES as an effective strategy for increasing muscle mass, muscle endurance, maximal voluntary strength, neural drive and oxidative metabolism, which could also increases immune system activity.13 With these changes proponents believe that NMES could have a positive effect on reducing muscular atrophy. While NMES may have the ability to induce these increases relative to not exercising, there are two important questions that have yet to be answered. The first question is whether or not NMES can outperform the current exercise regime utilized by ISS astronauts?

For example in one study despite aerobic exercise for 5 hours per week at moderate intensity and resistance exercise performed 3-6 days per week at 2 hours per day calf muscle volume in astronauts decreased by 13%, peak power decreased by 32%, force-velocity reduced between 20 to 29% and there was a 12 to 17% increased shift between fast twitch muscle to slow twitch muscle.14 This study and others support the idea that current vigorous exercise designs are not sufficient to ward off significant muscle atrophy hence why most ISS habitation is a maximum of six months.

Unfortunately there is little evidence to suggest that NMES is superior to voluntary endurance and strength exercises because there is almost no evidence comparing the two methodologies in well-designed and properly controlled studies. Another concern related to this comparison is the lack of specifics regarding the biological changes that occur when an individual is exposed to long-term NMES. Finally the second important question creates a logical belief that NMES is not equal or greater than normal voluntary exercise.

This second major question is how does NMES affect muscular fatigue? In humans despite using several different stimulation patterns, frequencies under 16 Hz were not strong enough to produce a contraction that extending a quadriceps to at least 40 degrees.15 Therefore, most stimulation methodologies, depending on the overall type of intervention, utilize frequencies between 20-50 Hz.16,17 This magnitude of frequency creates a non-selective, spatially fixed (due to the continuous nature of the pulse) and synchronous motor unit recruitment.18-20 The immediate interesting element is that these characteristics of recruitment are different from that which occurs in voluntary muscle contraction, which is governed by the Henneman’s size principle.21,22

The evolution of muscle firing and recruitment is shown in the size principle where smaller more fatigue-resistant motor units are activated first followed by larger units if necessary; these larger units can also replace de-recruited units that drop out due to fatigue.23 This process creates an efficient firing recruitment system that maximizes muscular endurance and reduces overall fatigue and its negative effects. However, NMES has a more random simultaneous recruitment instead of organized sequential recruitment, which eliminates fatigue-reducing mechanisms. Unfortunately the level of this non-selective recruitment is not uniform, but seems almost dependent on what particular muscle group is being stimulated.24,25 Another concern with this change in recruitment is how non-selective recruitment for approximately 6 months could influence the long-term functionality of normal voluntary movement when NMES is eliminated after arriving on Mars. Basically will there be any long-term negative effects when “retraining” muscles for size recruitment rather than random recruitment?

Also this increased rate of fatigue may explain why fast twitch muscle fiber tends to morph into slow twitch muscle in NMES patients13 as slow twitch muscle is more resistant to fatigue. This conversion is troublesome because as discussed above, for some reason slow twitch muscle tends to be more prone to atrophy versus fast twitch muscle. Thus this muscle conversion could handicap the ability of NMES to ward off muscle atrophy versus voluntary muscle exercises.

A third concern is that surface-stimulating electrodes apply current directly beneath the surface of the electrode. However, because the electrodes are on the surface the currents they produce need to travel through various subcutaneous tissues with a diverse level of resistances. One study calculated that this impulse was only able to reach superficial motor units 10-12 mm deep and had difficulty reaching the larger motor units deeper in tissue.26 Therefore, an increase in pulse width or amplitude would be needed to improve penetration to reach these other motor units. This “incomplete” penetration may also explain the non-selective motor unit recruitment seen from NMES. Another problem with the localized influence of the electrodes in NMES is the potential damaging effect of the isometric contractions. Multiple studies report significant increases in creatine kinase, macrophage infiltration, z-line disruption and increases in muscle soreness.27-30

A fourth possible issue with NMES is the lack of full neuronal activation. With the stimulation origin focused on a single location at a specific muscle group there is the potential for reduced neuronal coordination with other critical systems. For example some believe that one of the keys to effective muscular endurance and overall muscle health is not only consistent muscle exercise, but also the sequence that begets the activation of the muscle including proper interaction between the muscle, the heart and respiratory systems, something that escapes current NMES protocols. Basically for voluntary muscle movement the neuronal signals originate in the brain and are able to coordinate the appropriate timing on heart, respiratory and other important associated systems whereas NMES skips this activation and relies on feedback to start the process.

Some have thought to increase the effectiveness of exercise to neutralize atrophy through increasing circulating concentrations of growth hormone, various other steroids and/or insulin-like growth factor 1 (IGF-1), which is the main effector molecule for growth hormone, by either augmenting muscle growth or using proteolytic inhibitors to reduce muscle degradation.14 There are some preliminary studies that demonstrate a synergistic effect between growth hormone and exercise in reducing atrophy, but a lot more work needs to be done to establish a positive correlative protocol. For example chronic delivery of growth hormones and other protein growth factors is troublesome because they have short half-lives and damaging side effects in either large quantities or over long periods of time, which right now is required to augment muscle growth.31,32

When addressing safety a chief concern is about the total time an individual could remain in torpor (approximately 180 days). Some advocate hibernation in shifts where one individual is always awake and switches with another individual every x number of days. Even without a defined length of time for being both awake and in hibernation, the biggest immediate concern with this recommendation is how the body would cope with constantly moving between a hibernated and non-hibernated state. For example how would various enzymes and other proteins, which have a very short temperature range of activation, handle 6-7 cycles of being at 92 degrees C for 21 days and then 98.6 for 7 days? While some could argue that hibernating mammals, like bears, periodically roust themselves safely from torpor during their hibernation cycles before reentering hibernation this argument appears invalid because these creatures have evolved to hone the safe application of this behavior, humans have not.

Also the process of therapeutic hibernation is similar to flying in a plane where the most dangerous aspects are the entrance (takeoff) and awakening (landing); numerous entrances and awakenings from hibernation would only increase the probability of a critical failure resulting in serious health damage or death. Overall at this moment it is difficult to argue in favor of a hibernation “shift” strategy. If one is concerned about relying on 100% automation, it stands to reason that one person should remain active for the entire flight with remaining crewmembers in torpor.

Another question regarding the application of torpor is the loss of in-transit preparation time. While it is ideal that all of the colonists are sufficiently prepared for their specialized tasks when arriving on Mars, there is a significant unknown to how well they would retain this knowledge and training. During the transit, it is reasonable to suggest that most of the time would be spent honing their abilities and skills that will be applied upon arriving on Mars to reduce the probability of critical errors during the colonization process. In a torpor state this additional preparation time is lost. Therefore, it is important to consider how knowledge and skills will be retained both in general and within a torpor state.

While the benefits of placing numerous, if not all, astronauts traveling to Mars in a torpor state for the duration of the transit appear attractive there are two major issues that must be addressed. First, the safety of the methodology must be thoroughly analyzed. On its initial face determining safety may be quite difficult for two reasons: 1) the process of therapeutic hypothermia has only ever been significantly tested on people with severe injuries, not people with high levels of health, a characterization that would comprise all prospective Mars colonists. However, what type of “healthy” individual would volunteer to be placed in a 1-month, 2-month, 3-month, etc. torpor state to determine the positive and negative effects on his/her body? 2) all major testing would more than likely occur on Earth to ward off accidental loss of human life due to the ability to immediately act if anything goes wrong; however, without observing how the body would react in a microgravity environment versus the natural gravity environment of Earth creates holes in the knowledge of how the body changes over time while in hibernation during travel.

Second, it is well known that muscle atrophy is one of the biggest threats to the success of a long-term off-Earth colonization mission. At the moment there is little reason to suspect that NMES will be able to ward off atrophy at a similar level to existing exercise protocols let alone surpass their effectiveness. It does little good to save food and space in transit when colonists will simply suffer major muscle injuries upon waking up and moving around for the first time in half a year. Also the question of erosion of colonist skills is one that must be addressed because it would be unnecessarily risky to expect colonists to re-learn skills after landing on Mars. Overall while the idea of inducing a torpor state in colonists during transit to Mars is an interesting one there are numerous smaller questions as well as a few larger questions that must still be addressed as well as some potential technology hurdles before this strategy can be considered viable.

--

Citations –

1. Drew, K, et Al. “Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance.” J Neurochem. 2007. 102(6): 1713–1726.

2. Sessler, Daniel. “Thermoregulation and Heat Balance.” Therapeutic Hypothermia. Ed. Mayer, Stephen and Sessler, Daniel. Marcel Decker: New York, 2005.

3. Vandenburgh, H, et Al. “Space travel directly induces skeletal muscle atrophy.” FASEB J. 1999. 13:1031-1038.

4. Stewart, D. “The role of tension in muscle growth.” In Regulation of Organ and Tissue Growth (Goss, R. J., ed) 1972. 77–100, Academic Press, New York

5. Goldspink, D, Garlick, P, and McNurlan, M. “Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy.” Biochem. J. 1983. 210:89–98

6. Narici, M, and de Boer, M. “Disuse of the musculo-skeletal system in space and on earth.” Eur J Appl Physiol. 2011. 111(3):403-20.

7. Fitts, R, Riley, D, and Widrick, J. “Functional and structural adaptations of skeletal muscle to microgravity.” J Exp Biol. 2001. 204(18):3201-8.

8. Schollmeyer, J. “Role of Ca2+ and Ca2+-activated protease in myoblast fusion.” Exp Cell Res. 1986. 162(2):411-22.

9. Barnoy, S, Glaser, T, and Kosower, N. “Calpain and calpastatin in myoblast differentiation and fusion: effects of inhibitors.” Biochim Biophys Acta. 1997. 1358(2):181-8.

10. Haddad, F, et Al. “Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits.” J Appl Physiol. 2003. 95(2):781-90.

11. Sandri M. 2008. Signaling in Muscle Atrophy and Hypertrophy. Physiology 23: 160-170.

12. Bodine, S, and Baehr, L. “Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases, MuRF1 and MAFbx/Atrogin-1.” American Journal of Physiology – Endocrinology and Metabolism. 2014.

13. Maffiuletti, D, et Al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J. Appl. Physiol. 2011. 110:433-450.

14. Trappe, S, et Al. “Exercise In Space: Human Skeletal Muscle After 6 Months Aboard The International Space Station.” Journal of Applied Physiology. 2009. 106:1159-1168.

15. Crevenna, R, et Al. “Neuromuscular electrical stimulation for a patient with metastatic lung cancer–a case report.” Support Care Cancer. 2006. 14:970–973.

16. Chhabra, D, and dos Remedios, CG. “Cofilin, actin and their complex observed in vivo using fluorescence resonance energy transfer.” Biophys J. 2005. 89:1902–1908.

17. Coffey, V, and Hawley, J. “The molecular bases of training adaptation.” Sports Med. 2007. 37:737–763.

18. Gregory, C, and Bickel, C. “Recruitment patterns in human skeletal muscle during electrical stimulation.” Phys Ther. 2005. 85:358–364.

19. Jubeau, M, et Al. “Random motor unit activation by electrostimulation.” Int J Sports Med. 2007. 28(11):901-4.

20. Doucet, B, Lam, A, and Griffin, L. “Neuromuscular electrical stimulation for skeletal muscle function.” Yale Journal of Biology and Medicine. 2012. 85:201-215.

21. Henneman, E, Somjen, G, and Carpenter, D. “Functional significance of cell size in spinal notoneurons.” J Neurophysiol. 1965. 28:560–580.

22. Vanderthommen, M, and Duchateau, J. “Electrical stimulation as a modality to improve performance of the neuromuscular system.” Exerc Sport Sci Rev. 2007. 35(4):180-185.

23. Carpentier, A, Duchateau, J, and Hainaut, K. “Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus.” J Physiol. 2001. 534(3):903-12.

24. Bergquist, A, Clair, J, and Collins, D. “Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae.” J Appl Physiol. 2011. 110(3):627-37.

25. Thomas, C, et Al. “Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles.” Muscle Nerve. 2002. 25(6):797-804.

26. Fuglevand, A, et Al. “Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing.” Biol Cybern. 1992. 67(2):143-53.

27. Aldayel, A, et Al. “Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses.” J Appl Physiol. 2010. 109:735–744.

28. Aldayel, A, et Al. “Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors.” Eur J Appl Physiol. 2010. 108:709–717.

29. Jubeau, M, et Al. “Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage.” J Appl Physiol. 2008. 104:75–81.

30. Mackey, A, et Al. “Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans.” J Appl Physiol. 2008. 105:1620–1627.

31. Meling, T, and Nylen, E. “Growth hormone deficiency in adults: a review.” Am. J. Med. Sci. 1996. 311:153–166.

32. Hintz, R. “Current and potential therapeutic uses of growth hormone and insulin-like growth factor I.” Endocrinol. Metabol. Clin. N. Am. 1996. 25:759–773.

Saturday, October 25, 2014

Laundry on Mars

One of the back burner issues involved in the colonization of Mars is how will colonists do laundry? It seems like a rather simple question and a general task that is taken for granted, especially with the convenience of the developed world. However, on Mars heavy conservation of both energy and water will eliminate both conventional machine washing or even hand washing. So with these significant limitations how will Mars colonists clean their clothing?

Looking towards the behavior of astronauts on the International Space Station (ISS) does not provide any immediate assistance. While it is standard procedure for astronauts on the ISS to wear clothing for longer than a 24-hour period, its close proximity to Earth allows for simple clothing replacement during cargo missions with dirty laundry being burnt up during re-entry. This re-supply process is obviously not available for Martian colonists because additional clothing will add weight and cost to the initial launch and in addition to these negative elements will also take months to arrive in any supplementary launches. Another non-helpful aspect is that most conventionally worn clothing by astronauts visiting the ISS is not specialized in any real sense beyond having a reduced number of seams (or being seamless) with Cabelas and Lands End seemingly being the more prominent brands worn.

With the difficulties associated with cleaning and/or providing new clothing after the initial launch some could argue that after the habitat is established clothing may not be necessary. A well-kept habitat would have a comfortable temperature between 65 and 80 degrees F with little humidity. A lack of non-human origin microbes eliminates any direct infection issues. An air lock separates the preparation staging area for extravehicular activities (EVAs) and the remaining living area of the habitat eliminating the incursion of any negative outer environmental elements. Psychological evaluations and training can manage any potential colonist “revulsion” towards interacting with their nude crewmates. However, while the major immediate issues for accepting nudity appear manageable there are a number of smaller issues.

One of the less heralded benefits of clothing is absorption of general excretions like sweat, shed skin cells, etc. Without clothing there is a much higher probability that these excretions are deposited on various solid surfaces within the habitat, which would not be hygienic and could even damage equipment. Also clothing offers a secondary protective barrier to wards off various ailments that could breach the skin like burns or various cuts and scratches. This additional protection would also serve as a valuable psychological assurance when performing maintenance on various life support systems like waste disposal/recycling or when creating new parts in situ within a prospective machine shop. Not many individuals would be comfortable sanding/welding something with only eye protection.

Some rudimentary experiments have been conducted with some more specialized clothing options like the Japanese Space Federation’s “J-wear”, which includes underwear, shirts, pants, and socks made from cotton and polyester and purports to be anti-bacterial, water-absorbent, odor eliminating, antistatic and flame retardant. Most likely this material has these properties because it is doped with titanium oxide (titania or TiO2) and some other additives. However, the actual testing of this material is limited, especially in its publication, so the time frame for the efficacy of these claims is unknown. One “famous” study with a Japanese astronaut on the ISS created some anecdotal evidence that underwear can retain a chiefly non-offensive odor when worn for around one month.

The reason TiO2 is effective at creating the cleaning advantages is because it is a potent photocatalyst that is able to neutralize the staining of almost any organic compound when exposed to ultra violet (UV) radiation. When TiO2 is exposed to and absorbs UV it results in excited electrons on the valence band of TiO2. This excess energy promotes electrons to the conduction band creating new negative electrons and positive holes. In the presence of water the positive hole interacts with the water to form hydrogen gas and hydroxyl radicals. The free negative electron reacts with the newly formed hydroxyl radical to form a super oxide anion, which decomposes organic stains. In addition if TiO2 is doped onto a fabric it creates a protective film that provides a bio-static, super oxidative and hydrophilic barrier.

Photocatalytic effects, as described above, can also kill bacteria due to the large amounts of hydroxyl radicals produced during the reaction steps. These hydroxyl radicals also aid in eliminating odors as they breakdown the molecular bonds that comprise most volatile organic compounds (VOCs). Some have envisioned the further evolution of this process by doping the TiO2 with nitrogen and adding silver iodide to make the process applicable to visible light, but this is not necessary because a small portion of the habitat could inundated with a UV light source to act as a “laundry area” of sorts. Also it is unclear how safe the silver doping would be for excess exposure to silver iodide is toxic when ingested and repeated contact with skin can lead to argyria, which turns one’s skin blue. Therefore, it makes little sense to include silver iodide. Unfortunately efficient operation of photocatalysts, including TiO2 requires water, which will be in short supply on Mars. Therefore, testing would have to be performed to determine the length of time between UV “washes”.

With or without TiO2 doping exposure to UV light should be sufficient to eliminate any bacteria growth born from the bodies of the colonists. Therefore, the biggest issue will be odor. Another strategy to eliminate odors may be to incorporate a “Febreze” strategy. The active ingredient in the household odor eliminating product Febreze is hydroxypropyl beta-cyclodextrin. Various cyclodextrins including beta-cyclodextrin, are produced from starch via enzymatic conversion. These elements can theoretically be produced in situ on Mars, but the difficult element would be converting the beta-cyclodextrin to hydroxypropyl beta-cyclodextrin due to the lack of easily available carbon elements on Mars. Therefore, this type of solution may not be prudent.

Overall it is clear that some area of the habitat will have to be converted into a dark room of sorts with UV lights to act as an area to clean bacteria from clothing. Limiting the influence of odor on the psychological well being of the colonists is the principle question. Some could argue that individuals have a tendency to become accustomed to smells, but that desensitization demands a static element to the odors; it stands to reason that if odors are not managed then they will progressively expand in a negative manner, thus colonists will probably never generate an accustomed affinity. Therefore, an odor elimination strategy will need to be incorporated. Determining between either an “Febreze” chemical strategy versus a photocatalytic strategy will involve identifying the production capacity in situ of the desired odor eliminating chemical and the amount of water that will be required to active that phootcatalytic effect to sufficiently remove odor. This information can be easily determined in a long-term Martian colonization simulation study performed on Earth, which sadly do not yet incorporate such testing.

Tuesday, October 14, 2014

A new tool to help fight against mental illness?

The history of addressing mental illness has been a tumultuous one in the United States. In the past behaving against the norm commonly landed an individual in jail or an asylum, both which existed on the periphery of society, a location that potentially reduced the ability to produce effective treatment. The location was typically not the only element that reduced the viability of effective treatment as a number of asylums were poorly funded and staffed by a number of individuals who appeared to quickly tire of continuous interaction with “non-normal” individuals reducing their vigor for proper treatment both physically and mentally.

In more modern times a “so-called” enlightenment regarding mental illness was born from deinstitutionalization. The “noble” or liberalized story of deinstitutionalization involves the belief that the development of both Medicare and Medicaid as well as various psychotropic medications allows mentally ill patients to function “normally” and live among the community reducing the stigma of having a mental illness, thereby increasing their ability to assimilate and manage their condition(s). However, the more dirtied history of deinstitutionalization is that after the Supreme Court ruling in Souder v. Brennan prohibited mental hospitals from exchanging patient labor for room and board, forcing these institutions to pay for patient labor at minimum wage levels, there was little opposition to implementing the principles of the Community Mental Health Act of 1963 regardless of execution viability. Unfortunately despite the public’s apparent “zest” to integrate mental patients into society, the networked infrastructure that was to support these patients never materialized in a vast majority of places.

Sadly this early failure in the 60s and 70s has yet to be significantly rectified for while the proportion of individuals in public mental hospitals has dropped from 0.338% (558,000/165 million) in 1955 to 0.016% (50,000/313 million) in 2010,1 the Department of Justice estimated in 2006 that at least 24% of inmates in state prisons and 14% of inmates in federal prisons have mental illness and an additional 15% of state inmates and 24% of local/city inmates meet criteria for psychotic disorders.2,3 It stands to reason based on how mental illness is currently treated that this number has only increased into 2014. In addition at least 50% of a number of ex-cons with significant mental illness are rearrested typically through violations of their parole (these individuals have come to be known as “frequent fliers”).1 Incarceration has its own societal stigmas, imagine how difficult successful community treatment could be with both a criminal record and a mental illness.

Deinstitutionalization has also failed to live up to the idealistic diverse and “normal” environment pictured by its supporters in the associated residential “communities”. To most these “communities” have become a de facto urban asylum that again cares little for the recovery or treatment of the patients reducing the probability of any return to genuine normalcy. Some hold out hope that the focus of the American Care Act on result-based outcomes will be an effective panacea to the squalor conditions of a number of these mental illness communities, but whether or not that reality will emerge is difficult to predict due to numerous unknowns and at the moment seems more unlikely than likely.

These environmental factors notwithstanding, one aspect of treatment that is not typically discussed is the idea of an individual focal add-on treatment where an individual that suffers from mental illness attempts to “commandeer” their brain in effort to regain control. Basically one wonders if too much emphasis has been placed on pharmaceutical, talk therapy and, now in modern times, assertive community treatment resulting in the omission of more personal options? Such abandonment is perplexing because these potential methods have almost no side effects and very little financial cost. With this intention to add an extra tool to the toolbox it must be mentioned that general result-based analysis of treatments for mental illness is almost non-existent. Despite advancements in the ability to treat mental illness almost no one actually studies which of these treatments work, both on an absolute (does treatment A work) and relative (does treatment A work better than treatment B) level.4,5 Therefore, these methods would have to be studied and compared against and in cooperation with existing methods.

One example of an individually driven treatment would be an attempt to control the multiple network firing of schizophrenia by engaging in a task requiring overpowering focus to reduce the firing of the other more spontaneous neuronal elements. For example when a schizophrenic begins to hear voices he/she would begin to play a game of chess, start a logic puzzle, a sudoku puzzle, i.e. a task that requires significant focus in order to be successful. One of the keys to this strategy is to identify a simple task/game that requires focus, but also makes an individual content (not necessarily happy). The necessity of contentment is to ensure a lack of frustration thus affording the ability to maintain focus.

Contentment is an element that seems to be pushed to the side when discussing mental illness, with focus instead placed on happiness and unhappiness. Contentment is important because it is less vulnerable to the negative impacts of more extreme emotional states, which can rapidly cascade into opposing elements (i.e. happiness can quickly become unhappiness and visa-versa), but is still emotionally positive enough to spark focus and enjoyment.

Another option could be producing an overpowering focus through visualization. By focusing on a single place of reference an individual would create a positive non-violent altered reality that could control spontaneously produced changes in mood or sensory information. The complexity of elements assigned to enriching and maintaining the visualization could mute the action potentials associated with the spontaneous firings that create symptoms of mental illness.

Another technique, one more recognizable by many for its ability to assist in mental control, is meditation. In recent years meditation has become an interesting subject of contemplation regarding its potential to manage the negative symptoms of mental disease. For the purpose of this brief discussion meditation is regarded as a physiological state invoking physical and mental relaxation with a reduced metabolic activity.6

The state of meditation is achieved through the reduction of thought processes to a single focused internal dialogue in the mind eliminating mental clutter and spontaneous thoughts. Unsurprisingly the elimination of this mental clutter enhances pure awareness and clarity on the single internal dialogue, usually calm central breathing tethered by the single focal word. Theoretically a meditative state could block the occurrence of negative symptoms from mental illness. This possibility is supported by the reported long-term effects seen in meditation practitioners such as: enhanced concentration attention skills, improved self-control and self-monitoring, increased ability to inhibit irrelevant external and internal stimuli, increased positive mood, emotional stability and improved resilience of stress.7 One issue with meditation is that most of the research has been conducted in small groups with few meaningful controls; therefore, outside of very long term practitioners it is difficult to determine when the advantages of consistent meditation will take hold.

However, meditation does have its share of more serious potential concerns as there is past evidence that during meditation an individual with a mental illness can have an increased probability of exacerbating short-term (non-permanent) psychosis.8 This increased risk for temporary psychosis could be drawn from the increased anxiousness that is common among individuals with mental illness, which makes meditation in general more difficult, but could also make it more beneficial in the long run. Another concern is that individuals with mental illnesses have motivational issues or even defects, which may make inspiring the discipline for routine focal tasks like meditation more difficult.

Note that these above personal add-on strategies differ from cognitive behavioral therapy because they do not seek to change the long-term thinking paradigms held by a particular individual. Instead these techniques are theoretically thought to act as an acute deterrent to be applied upon the onset of a significant negative aspect of a given mental illness.

On a side note numerous individuals think that education is an important aspect to limiting, or even eliminating, stigmas associated with mental illness, which is a reasonable and accurate assessment. However, no one really seems to suggest a means of applying a mandatory aspect to this education element, which would significantly increase its effectiveness. For example one effective means to addressing public education of mental illness would be for all high school students to take a psychology class that would be required for graduation that covers various mental illnesses in depth. Through this class all high school students would learn rudimentary means to identify symptoms of mental illness, manage it, and how to effectively interact with those who have a mental illness limiting uncomfortable and/or inappropriate moments.

Overall many have professed a concern that mental illness will increase in the future due to increases in population and proportion of occurrence.9 This increase is buffered by the concern that most traditional talk therapy treatment will remain centralized in high population affluent areas of the country. Unfortunately there is no evidence that this unequal distribution of certain psychological services will change, thus placing additional pressure on community environmental therapy and pharmaceuticals. To alleviate this pressure new techniques need to be developed. Understand that these techniques are acute immediate response deterrents and are not meant to replace other therapies; it is to say that one should not say that Johnny no longer needs his anti-psychotics because he plays chess. The above strategies appear to be theoretically viable and worthy of further study to determine whether or not they are empirically viable. If so these individual acute strategies could be important elements in reducing the more severe negative attributes associated with mental illness.


Citations –

1. Edmondson, B. “Crazy enough to care.” The American Scholar. Spring 2012. 46-55.

2. Clayton, A, et Al. “The citizenship project part II: impact of a citizenship intervention on clinical and community outcomes for persons with mental illness and criminal justice involvement.” Am. J. Community Psychol. DOI 10.1007/s10464-012-9549.

3. Department of Justice. Mental health problems of prison and jail inmates. Bureau of Justice Statistics Special Report. (2006). NCJ 213600.

4. Morgan, R, et Al. “Treating offenders with mental illness: a research synthesis.” Law Hum Behav. 2012. 36(1): 37–50.

5. Rice, M, and Harris, G. “The treatment of mentally disordered offenders.” Psychology, Public Policy, and Law. 1997. 3:126–183.

6. Young, J, and Taylor, E. “Meditation as a voluntary hypometabolic state of biological estivation.” News in Physiological Sciences. 2001. 13:149–153.

7. Rubia, K. “The neurobiology of meditation and its clinical effectiveness in psychiatric disorders.” Biological Psychology. 2009. 82:1-11.

8. Walsh, R, and Roche, L. “Precipitation of acute psychotic episodes by intensive meditation in individuals with a history of schizophrenia.” Am J Psychiatry. 1979. 136:1085–6.

9. Mathers, C. and Loncar, D. “Updated projections of global mortality and burden of disease, 2002–2030 data sources, methods and results.” Evidence and Information for Policy. 2005.

Saturday, September 27, 2014

Who’s afraid of a big bad guaranteed basic income?

Note: Reading about the structure and execution of a GBI here would go a significant way to enhancing this particular blog post.

The political trepidation behind the very attempt to legislate a guaranteed basic income (GBI) should be quite surprising, but sadly is not. A GBI should be one of the major goals of the progressive movement, but there has been no effort to achieve it, largely based on the notion that a GBI is thought of as “politically unfeasible”. However, what is interesting from a logical and rational perspective is that there is no direct fundamental reason why a vast majority of United State citizens would object to a GBI regardless of their political, religious or other moral leanings.

For example suppose:

You are a Democrat –


A GBI is generally the Holy Grail with respects to eliminating poverty and hunger. With a GBI poor individuals will be able to create a stable savings account and advance their economic position without the significant threat of falling into the poverty trap. In addition all individuals will be able to afford to attend college, if so desired, creating a more educated and creative society. Individuals that have already attended college would have a greater ability to pay off student loan debt in a timely fashion removing the potential of being financially crippled by consistent payments during hard times. Finally no longer would an individual be handicapped and imprisoned by the poor decisions of their parents for regrettably the economic climate of the United States no longer only demands hard work and reasonable intelligence, but social and political connections.


You are a Republican –


A GBI is an effective means to reduce the level of bureaucracy in the Federal government resulting in the simple and transparent consolidation of all government “safety net” programs which include, but are not limited to: unemployment insurance, general welfare, supplemental nutrition assistance program (SNAP a.k.a. food stamps), school meal programs, low-income housing assistance, home energy bill assistance, refundable portions of the Earned Income Tax Credit and Child Tax Credit, supplemental security income, etc.

There is reason to suspect that the supplementary income provided by a GBI will also increase the probability of marriage and strength family bonds in general. One of major reasons why marriage rates have decreased over the last few decades, especially the last decade, is that most younger individuals are holding off marriage because they do not have the necessary financial resources. Some individuals could argue that small-scale studies disprove this benefit, but that argument misinterprets the results of those studies. Based on logic and the existing marriage climate a GBI should increase marriage probability.

Finally a GBI would significantly enhance market efficiency by increasing the available spending and investment capital in the environment. Not only would individuals have more available money to drive the consumption elements of the economy creating more indirect business opportunities and jobs, individuals would have additional capital that could be utilized to establish their own businesses. Basically instead of relying on venture capitalists or harder to acquire bank loans, which creates market inefficiencies by removing money from the general consumer environment, the money acquired from these businesses stays with the company founders and in the general consumer economy. Keeping more money in this part of the economy will accelerate economic growth. However, if bank loans are needed a GBI would increase credit flow from lending institutions due to increased confidence in repayment.


You are a Libertarian –


A GBI significantly enhances personal freedom by reducing the severity of economic obstacles. Instead of being bound to a job one hates and has little skill at solely because one needs the paycheck to eat, an individual can use the GBI to make decisions not bound by the need for a paycheck. The GBI will accomplish a noted goal, reducing the size of the Federal government. Finally a GBI will further the development of a genuine meritocracy, that winners and losers are determined by talent, hard work, drive, intelligence, etc., instead of a somewhat fixed system where an individual can be consistently placed at a significant disadvantage by elements outside of his/her control.


Regardless of one’s political affiliation a GBI would create a dramatic reduction in lost human potential. For example instead of having an individual who is interested and gifted in engineering, psychology, teaching, law enforcement, etc., bound to a low level undesired service job simply to put food on the table or to help his/her family, this individual will now be able to pursue jobs with their valued skill sets and interests. This rejuvenation of human potential will increase economic efficiency and growth as well as increase physical and mental health.


You are an Environmentalist –


An environmentalist may balk at the above mention of economic growth through additional consumption. However, it is important for environmentalists to recall that a vast majority of “environmentally friendly” energy and transport options are significantly more expensive than their less friendly alternatives; with the additional funds from a GBI individuals will be able to more easily support positive environmental changes increasing the probability for continued economic growth while at the same time reducing the damages born from global warming and other pollution factors.


You are a “Insert Religion Here” –


One of the major tenets of every major religion is to help the poor; supporting and creating a GBI is one of the best strategies for helping the poor. In addition a GBI would free up significant charitable donations to various religious organizations from domestic commitments and allow them to be redistributed to global charitable projects, if so desired. Overall anyone who truly believes in the message of their particular religious faith should support a GBI.


You are in the Upper 15% Income Bracket –


Intuitively one might think that rich individuals, make no mistake those in the top 15% income bracket are rich, would be opposed to a GBI because of the small changes it would make to the tax code resulting in a very slightly reduced direct return. However, a GBI would also significantly increase the amount of disposable income to the general public, which would significantly increase the moneymaking opportunities for rich individuals through investment. It stands to reason that intelligent rich individuals would support a GBI because they could identify the worthwhile new business opportunities in which to invest, either directly or indirectly through stocks, thus increasing their overall wealth as well as improving society in general. Therefore, rich individuals should support a GBI as a means to increase their personal wealth, increase the overall prosperity of the country (enhancing international negotiating power) and reduce market uncertainty and inefficiency increasing overall productivity.


With a vast majority of the public falling into one of the above demographics that would logically support a GBI it is rather peculiar that no reasonable effort has been made by the Federal government to establish one. As stated at the beginning of this thought exercise it appears that preconceived notions about a GBI not being “political feasible” has derailed its viability before even identifying whether or not these preconceived notions are accurate. The interesting thing about this philosophy is how can a piece of legislation be defined as “dead on arrival” if no one actually brings the issue up for discussion? Allowing these assumptions to control the actual perception of various ideas prevents the United States from identifying and establishing quality legislation like a GBI. Overall there is little reason to object to a GBI as long as it is operated transparently and is cost effective for it benefits everyone in society even if some individuals may not immediately realize it.

Tuesday, September 16, 2014

Reducing Concussions in Football?

The awareness and medical implications of concussions in professional sports have increased significantly over the last half-decade, especially in National Football League (NFL). The direct responsibilities of both the NFL and players to manage the concussion question have previously been outlined in the blog here. Unfortunately neither party, especially the players, has administered those responsibilities appropriately. While behavior still needs to be adjusted to reduce concussion probability, there may be biological strategies that can help maximize positive health outcomes for athletes with regards to concussions.

Various concussion research has involved evaluating rugby-based headgear as well as other helmet designs, custom-fitted mouth guards and face shields (in ice hockey).1-4 The general conclusions are that no particular type of headgear, including rugby-based, reduces the probability of acquiring a concussion any more effectively over most other types of helmets and there is no strong evidence that mouth guards or face shields reduce concussions.4,5 In addition significant amounts of research has focused on post-concussion symptoms and recovery. However, less research has been conducted on secondary factors to developing concussions. For example football has changed significantly in many ways since the early professional days in the 50’s and 60’s; one way that could be very relevant to concussion development is the means in which the brain processes and consumes oxygen.

There are two chief theories that attempt to explain the biological origins of a concussion. First, some believe that the first step involves a significant level of at least one type of force, linear, rotational or angular, that is directly or indirectly applied to the head leading to the disruption of cell membranes in various neurons throughout the brain. This disruption creates an influx of potassium ions to the cells resulting in depolarization and the release of neurotransmitters, usually glutamate.6 The release of glutamate creates a cascade of depolarization among various neuronal networks. Sodium-potassium pumps operate at greater than normal capacity to correct the unnatural and uncontrolled potassium influx, which leads to an energy shortage (excessive consumption of ATP and glucose) resulting in excess lactate accumulation.7-9 All of these elements work in consort to generate neurological imbalance and damage.

Some also believe there is a loss of glucose metabolizing efficiency due to excessive metabolization during the initial stages of the concussion. This loss of metabolizing efficiency is due in part to inefficient lactic acid removal after the concussion event, at least in rodents, which leads to reduced blood flow for a number of days after a concussion event.7,10 Interestingly enough this lack of blood flow could explain why an individual has a higher concussion probability rate (vs. baseline) for a number of days after the initial concussion event because there is less cerebral blood flow and greater ability to produce slosh and other forces. Whether or not calcium accumulation results in cell death through a secondary pathway is unclear.11

Second, some believe that rapid acceleration/deceleration of the brain due to forces and collisions create “slosh” (movement of liquid inside containers that are undergoing motion). Slosh occurs in tissues and fluids with differing densities (white matter, skull, spinal fluid, blood, gray matter, etc.) because they accelerate/decelerate at different rates leading to shearing forces and even hydrodynamic cavitation.12,13 Cavitation is the formation of vapor cavities in liquid born from a rapid change to a lower pressure (below saturated vapor pressure of the liquid). After these cavities are formed an increase in pressure results in their implosion creating shockwaves. These shockwaves create damage throughout the brain.14

Whether or not concussions are driven by functional or structural changes is still an open question. While structural damage has been demonstrated in some brains of humans, commonly resulting in a state similar to Alzheimer’s disease, these changes appear to require numerous concussions over a relatively short period of time (decade or less). Overall it is highly likely that concussions are driven by temporary functional changes, which is why the symptoms are only temporary.

An interesting element about concussions is that both rams and woodpeckers can tolerate head impacts much larger than those that are thought to induce concussions in humans. For example typical football impacts generate 25 to 50-g of force whereas rams ramming each other during demonstrations of supremacy generate 500-g and woodpeckers generate 1200-g numerous times a day.15 This ability to experience head trauma without detrimental outcome is thought to be managed by manipulating intracranial volume and pressure. Both animals have different methodologies behind this ability; rams utilize a carbon dioxide-mediated response to altitude and woodpeckers utilize altered jugular outflow.12,15 These methods create efficient brain compacting, which reduces motion and shearing forces. Clearly altering jugular outflow is not reasonable for humans, but it may be possible to incorporate information from an altitude response to reduce the probability of concussions.

Some of the central features that drive a concussion occur within the skull, which is why no helmet can ever clinically claim to reduce concussions because they cannot directly influence forces inside the cranium. However, playing at an increased altitude (venues at or exceeding 644 ft.) appears to decrease the probability of developing a concussion. A recent study of concussion occurrence in the NFL calculated a 30% reduction at higher altitudes.15 Recall from above that one of the elements that is thought to causes concussions is the brain “sloshing” around creating various forces and cavitation. Clearly one of the methods to reduce the probability of concussions is to increase intracranial volume that would allow the brain to reduce “slosh”.15,16

Some have argued that inadequate adjustment to altitude reduces the ability of players to exert maximum effort thus reducing the amount of force applied when running, blocking and tackling thereby reducing the probability of concussions. However, studies in the past have demonstrated that there is no significant enhancement of fatigue at the 644 ft. threshold; therefore, this “reduced force” reasoning should not be applicable. If concussion probability reduction occurred only at higher altitudes like 2000 ft. then it would be more plausible, but that is not the case.

The protective effect of higher altitudes may directly involve the rate of oxygen flow to the brain. The chief change relative to oxygen at higher altitudes is a drop in oxygen partial pressure throughout the body, especially the brain. For example alveolar oxygen partial pressure drops from 103 to 98 when moving from 0 to 1000 ft.17,18 This reduced partial pressure lowers the available oxygen in the blood for consumption by various organs including the brain. With a greater demand for oxygen cerebral blood flow increases, which increases intracranical volume and decreases the probability of concussion. This relationship between oxygen and altitude could also explain why there is not an empirical linear relationship in the above study between altitude and oxygen for after a certain point players become fatigued by the lack of ambient oxygen and resort to supplementing oxygen consumption with outside sources. This supplementation could explain why Denver, the highest altitude playing field in the NFL, did not have the lowest rate of concussion.15

The relationship between oxygen-related blood flow and concussions also can influence the rate of inertial cavitation. The skull can be considered a rigid vessel with a reduced compliance (due to increased intracranial volume) the probability of inertial cavitation decreases because there is less sudden directional changes in near-by fluids reducing the formation of vapor cavities.13,14,19,20 Therefore, increased cerebral blood flow reduces both the force and the cavitation elements associated with potential concussion progression.

So how is cerebral blood flow controlled naturally? The brain has a much higher metabolic requirement for oxygen than other organs and uses approximately 20% of existing oxygen to maintain normal function. Under normal biological operation blood flow to the brain is constant due to vascular resistance provided by large arteries and parenchymal arterioles and tight gap junctions.21,22 Flow is increased through the dilation of upstream vessels avoiding downstream microvascular pressure.23 Overall blood flow rates are controlled by vasodilation of distal to proximal arterial and myogenic mechanism24 maintaining a cerebral blood flow at approximately 50 mL per 100 g per minute as long as cerebral perfusion pressure (CPP) is between 50-60 and 160 mmHg.25

If CPP falls below 50-60 mmHg cerebral ischemia occurs and the body attempts to compensate by increasing oxygen extraction from blood and increasing blood flow to the brain.26,27 Part of the reason blood flow needs to increase is because the partial pressure of oxygen drops hemoglobin saturation from 100% to 50%.28 There is a rather linear relationship between blood flow and CPP below 50-60 mmHg, but there is little change in metabolism regardless of oxygen partial pressure.28 Under these hypoxic conditions cerebral arteries and arterioles reduce vascular resistance increasing vasodilation and smooth muscle hyperpolarization.

An increase in CO2 concentration has a similar effect to reducing oxygen concentration because of a decrease in oxygen partial pressure. In response cerebral blood flow is increased through similar methods as above (cerebral arteries and arterioles dilation).29 The biological effect of CO2 inhalation is rather significant where a solution of 5% CO2 increases cerebral blood flow by 50% and a 7% CO2 solution increases blood flow by 100%.30 The chief mechanism behind hypercapnic vasodilation is the direct influence of extracellular hydrogen on vascular smooth muscle as changes in CO2 partial pressure along does not change cerebral artery diameter.31,32

With the above information it appears that increasing the ratio of CO2/oxygen in the blood will increase the rate of blood flow to the brain, which will decrease the probability that an individual suffers from a concussion. Outside of playing at altitude what are the methods to increase cerebral blood flow? One long term solution could be breathing conditioning where continuous periods of holding one’s breath would increase CO2 concentration in the blood stream over a very short period of time which could lead to the expansion of carotid arteries increasing blood flow to the brain.

However, breathing conditioning is a long-term solution that many individuals may not have the time or the inclination to undertake, so is there a short-term solution that can temporarily increases cerebral blood flow? One possibility that springs to mind is the consumption of a specific carbonic acid beverage (basically a stronger version of soda/pop). Whether or not this method would be viable is unclear as there is almost no empirical information regarding how the consumption of such a beverage would influence cerebral blood flow or other systems and organs.

Another question is whether or not the use of mouth-to-mask ventilation increases concussion risk by temporarily reducing cerebral blood flow. While there appears to be no direct evidence regarding this question, anecdotal evidence involving the drop-off of concussion reduction at very high altitudes (Mile High Stadium in Denver for example) appears to support this idea.
Basically the technical aspect of this question is how does the brain respond with respects to blood flow to a brief (15-30 seconds) inhalation of 50-100% oxygen and what is the residence time of this response? The answer to this question could change the use of mouth-to-mask ventilation to only emergency situations rather than an augmented pick-me-up after a 26-yard run in order to avoid increasing the chance of a concussion in the next play.

There are numerous behavioral methods to reduce the probability of concussions in football including ensuring that defensive players tackle properly (no leading with the head) and proper neurological evaluation after significant head contact. However, another avenue of concussion prevention has remained generally unexplored. Based on some preliminary evidence it appears that devising a strategy to increase cerebral blood flow to act as a “biological helmet” could go a long way to decreasing the probability of concussion development. The one significant caveat to the development of such a method would be determining any long-term detrimental effects associated with multiple temporary increases to cerebral blood flow. Overall it is important to investigate biological methods as well as material methods and behavioral solutions to prevent concussions in sports.

==
Citations –

1. McIntosh, A, et Al. “Does padded headgear prevent head injury in rugby union football?” Med Sci Sports Exerc. 2009. 41:306–13.

2. Benson, B, et Al. “Head and neck injuries among ice hockey players wearing full face shields vs half face shields.” JAMA. 1999. 282:2328–32.

3. Newsome, P, Tran, D, and Cooke, M. “The role of the mouthguard in the prevention of
sports-related dental injuries: a review.” Int J Paediatr Dent. 2001. 11:396–404.

4. Benson, B, et Al. “What are the most effective risk-reduction strategies in sport concussion?” Br. J. Sports Med. 2013. 47:321-326.

5. Benson, B, et Al. “Is protective equipment useful in preventing concussion? A systematic review of the literature.” BJSM. 2009. 43:i56–67.

6. Katayama, Y, et Al. “Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury.” J Neurosurg. 1990. 73(6):889–900.

7. Giza, C, and Hovda, D. “The neurometabolic cascade of concussion.” J Athl Train. 2001. 36(3):228–235.

8. Yoshino, A, et Al. “Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state.” Brain Res. 1991. 561(1):106–119

9. Andersen, B, and Marmarou, A. “Functional compartmentalization of energy production in neural tissue.” Brain Res. 1992. 585(1–2):190–195.

10. Maugans, T, et Al. “Pediatric Sports-Related Concussion Produces Cerebral Blood Flow Alterations.” Pediatrics. 2012. 129:28-38.

11. Meehan, W, and Bachur, R. “Sport-Related Concussion.” Pediatrics. 2009. 123;114-123.

12. Smith, D, et Al. “Internal jugular vein compres­sion mitigates traumatic axonal injury in a rat model by reducing the intracranial slosh effect.” Neurosurgery. 2012. 70:740-746.

13. Turner, R, et Al. “Effect of slosh mitigation on histo­logic markers of traumatic brain injury: laborato­ry investigation.” J Neurosurg. 2012. 117:1110-1118.

14. Goeller, J, et Al. “Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.” J Neurotrauma. 2012. 29:1970-1981.

15. Myer, G, et Al. “Rates of concussion are lower in National Football League games played at higher altitudes.” Journal of Orthopaedic & Sports Physical Therapy. 2014. 44(3):164-172.

16. Kurosawa, Y, et al. “Basic study of brain injury mechanism caused by cavitation.” Conf Proc IEEE Eng Med Biol Soc. 2009. 7224-7227.

17. Altitude oxygen calculator. Available at: http://www.altitude.org/oxygen_levels.php.

18. Kraemer, W, et Al. “Resistance training and youth.” Pedi­atr Exerc Sci. 1989. 1:336-350.

19. Church, C. “A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.” J Acoust Soc Am. 1989. 86:215-227.

20. Zhong, P, et Al. “Effects of tissue constraint on shock wave-induced bubble expansion in vivo.” J Acoust Soc Am. 1998. 104:3126-3129.

21. Faraci, F, and Heistad, D. “Regulation of large cerebral arteries and cerebral microvascular pressure.” Circ Res. 1990. 66:8–17.

22. Cipolla, M, et Al. “SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion.” Stroke. 2009. 40:1451–1457.

23.Kulik, T, et Al. “Regulation of cerebral vasculature in normal and ischemic brain.” Neuropharmacology. 2008. 55:281–288.

24. Iadecola, C, et Al. “Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex.” J Neurophysiol. 1997. 78:651–659.

25. Phillips, S, and Whisnant, J. “Hypertension and the brain.” Arch Intern Med. 1992. 152:938–945.

26. Hossmann, K-A. “Viability thresholds and the penumbra of focal ischemia.” Ann Neurol. 1994. 36:557–565.

27. Iadecola, C. Cerebral circulatory dysregulation in ischemia. In Cerebrovascular Diseases, Ginsberg MD, Bogousslavsky J. (Eds.). Cambridge, MA: Blackwell Science, 1998. 319–332.

28. Steiner, L et Al. “Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity.” Br J Anaesth. 2003. 90:774–786.

29. Reivich, M. “Arterial PCO2 and cerebral hemodynamics.” Am J Physiol. 1964. 206:25–35.

30. Kety, S, and Schmidt, C. “The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948; 27:484–492.

31. Kontos, H, Raper, A, and Patterson, J. “Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels.” Stroke. 1977. 8:358–360.

32. Kontos, H, et Al. “Local mechanism of CO2 action of cat pial arterioles.” Stroke. 1977. 8:226–229.